
LinuxVirtualServer OpenSource Project 1

Abstract

This paper describes one implementation of the
VRRPv2 protocol. We have done enhancements of the
original protocol for use with Linux Virtual Server. The
goal of this document is to present the software design
of the VRRPv2 implementation for use with LVS. We
will focus on the implementation, so attempted audi-
ence is network software designer, experimented sys-
tem administrators and all hacking person looking for
VRRPv2 implementation internals. Finally the goal of
this document is a real world example on how our de-
sign can be used in conjunction with Linux Virtual
Server to provide virtual services shared by multiple
LVS directors.

1. Introduction

Loadbalancing is a good solution for service
virtualization. When you design a loadbalanced
topology you must take a special care of :

• Realserver availability using healthchecking.
• Loadbalancer availability using failover protocol.

Realserver availability provide a global High Available
virtual service. This problematic is mainly handled
using healthcheck software. But using a loadbalancer
director you introduce a Single Point Of Failure for the
virtual service. So loadbalancer high availability must
be provided. In this paper we will not present
healthchecker, we will specially focus on the second
point. We will trait this topic using a protocol especially
designed to handle gateway virtualization/failover
called VRRPv2. This protocol will give us the ability to
define a “Virtual Loadbalancer”. This “Virtual
Loadbalancer” will be compounded by multiple “Real
Loadbalancer” that can be active at a time and
monitoring each other.

2. VRRPv2 Overview

“VRRP specifies an election protocol that dynamically
assigns responsibility for a virtual router to one of the
VRRP routers on a LAN. The VRRP router controlling
the IP address(es) associated with a virtual router is
called the Master, and forwards packets sent to these IP
addresses. The election process provides dynamic fail
over in the forwarding responsibility should the Master
become unavailable. This allows any of the virtual
router IP addresses on the LAN to be used as the
default first hop router by end-hosts. The advantage
gained from using VRRP is a higher availability default

path without requiring configuration of dynamic
routing or router discovery protocols on every end-
host.” [rfc2338].

3. System Architecture Overview

Our global logical architecture is illustrated in the
following figure :

As described into the rfc2338, VRRPv2 protocol
manipulate floating IP addresses roaming between
routers.

3.1 Definitions

Our VRRPv2 implementation uses the following
notions [rfc2338.1.2] :

• VRRP Instance : A thread manipulating VRRPv2

specific set of ip addresses. A VRRP Instance may
backup one or more VRRP Instance. In our figure
1 we are dealing with 4 VRRP Instances. One
owning (VIP1,VIP2), one owning (VIP3,VIP4),
one owning (DIP1) and one owning (DIP2). It may
participate in one or more virtual routers.

• IP Address owner : The VRRP Instance that has the
IP address(es) as real interface address(es). This is
the VRRP Instance that, when up, will respond to
packets addressed to one of these IP address(es) for
ICMP, TCP connections, …

Linux Virtual Server High Availability using VRRPv2

Alexandre Cassen
Linux Virtual Server OpenSource Project

Paris, France
acassen@linux-vs.org, http://www.LinuxVirtualServer.org/~acassen/

LVS Director 1 LVS Director 2

WAN NIC

LAN NIC

WAN NIC

LAN NIC

VIP1

VIP2

VIP4

VIP3

DIP1 DIP2

Realserver Pool 1 Realserver Pool 2

Figure 1: Virtutalized loadbalancer

mailto:acassen@linux-vs.org

LinuxVirtualServer OpenSource Project

• MASTER state : VRRP Instance state when it is
assuming the responsibility of forwarding packets
sent to the IP address(es) associated with the
VRRP Instance. This state is illustrated on figure 1
by red line.

• BACKUP state : VRRP Instance state responsible of
packets forwarding when the current VRRP
Instance MASTER state fails.

• Real Loadbalancer : A LVS director running one or
many VRRP Instances.

• Virtual Loadbalancer : A set of Real Loadbalancer.

• Synchronized Instance : VRRP Instance with which
we want to be synchronized. This provide VRRP
Instance monitoring.

• Advertisement : The name of a simple VRRPv2
packet sent to a set of VRRP Instances in
MASTER state.

3.2 System workflow

We want to design a full redundant architecture with
outgoing traffic loadbalancing. This is a very common
use of such a protocol. When setting up LVS director
high availability (virtualized loadbalancer) we want the
backup director to handle traffic too. That way LVS
directors will be redundant and active at a time. This
architecture is illustrated on figure 1. We define half of
the host to route through DIP1 and the other half to
route through DIP2 [rfc2338.4.2]. This consideration
introduce the synchronization handling.

In our case study, Realserver Pool 2 belong to virtual IP
addresses VIP3 & VIP4. So remote client access those
VIPs to access Realserver Pool 2 service. But
Realserver Pool 2 route its outgoing traffic through
DIP2, so DIP2 & VIP3/VIP4 must be active on the
same director to preserve routing path. This finally
mean that if LVS director 2 LAN interface fails, WAN
interface IP address(es) owned must be set on the
redundant LVS director 1 WAN interface.

Considering VRRP configuration, each LVS directors
must have the knowledge of the whole LVS redundant
topology. This mean that both LVS directors run 4
VRRP Instances. 2 VRRP Instances in MASTER state
and the others in BACKUP state. MASTER/BACKUP
state are symmetric on the both LVS directors VRRP
configuration. On LVS director 1, the VRRP Instances
configuration looks like :

• VI_1 : In MASTER state - owning VRRP VIP1 &

VIP2.
• VI_2 : In MASTER state - owning VRRP DIP1.
• VI_3 : In BACKUP state – backuping VRRP VIP3 &

VIP4.
• VI_4 : In BACKUP state – backuping VRRP DIP2.

On LVS director 2 we have the symmetric
configuration where VI_1 & VI_2 are in BACKUP
state and VI_3 & VI_4 are in MASTER state. If one
VRRP Instance in MASTER state fails, to preserve
routing path, the VRRP transition state must follow the
workfow :

• VRRP DIP2 fails :

Du
Imm
sta
MA
unr
to M

• V

tor 2

C

VIP4

Pool 2

LVS Director 1 LVS Direc

WAN NIC

LAN NIC

WAN NI

LAN NIC

VIP1

VIP2 VIP3

DIP1 DIP2

Realserver Pool 1 Realserver

Figure 2: VRRP DIP2 fails
e to an undefined reason, DIP2 is not available.
ediately, symmetric VRRP Instance, in BACKUP

te, running on LVS director 1 stop receiving VRRP
STER advertisements. It deduce that DIP2 is

eachable so the BACKUP state Instance must transit
ASTER state.

RRP Instance VI_4 on LVS director 1 transition to
MASTER state :

or 2

VIP4

Pool 2

r
LVS Director 1 LVS Direct

WAN NIC

LAN NIC

WAN NIC

LAN NIC

VIP1

VIP2 VIP3

DIP1 DIP2

Realserver Pool 1 Realserver

Figure 3: VRRP DIP2 takeove
2

LinuxVirtualServer OpenSource Project 3

LVS director 1 VI_4 stop receiving VRRP
advertisements from LVS director 2 VI_4. The DIP2
automatically takeover on LVS director 1.

• VRRP Instance VI_3 on LVS director 1

synchronization to MASTER state :

Finally VIP3 & VIP4 are synchronized on LVS director
1 to preserve routing path. If LVS director 2 LAN
interface is shut, this is a finite state fails for LVS. So
others MASTER VRRP Instances need to be
synchronized.

The VRRP MASTER Instances synchronization
convergence is a derivation of the VRRP protocol. This
mean that the IP takeover convergence is extremely
depending on the VRRP timers handling.

In this fail state where LVS director 2 is depreciated, all
traffic is handled by LVS director 1. This state must be
considered as a takeover transition state. This mean that
if LVS director 2 LAN interface is becoming available,
all the VRRP Instances will transit to their initial VRRP
state. So the stable state is the initial state, takeover
state is completely temporary because it is all time
waiting to transit to its initial state.

We have just describe this VRRP Instance
synchronization state as it is not in the VRRP [rfc2338].
All the other state transition will not be presented in this
document since it is efficiently described into the
VRRP [rfc2338].

4. Implementation issues

The VRRPv2 implementation is articulated around 3
software components :

• VRRP Socket Pool
• VRRP Packet Dispatcher
• VRRP Instance Synchronization

VRRP implements its own scheduling framework to
handle fd timeout and packet dispatching. So the 2 first
point are referring to the VRRP scheduling framework.

4.1 VRRP Socket Pool

This part of the VRRP scheduling framework is only
used during the VRRP bootstrap. It register the VRRP
Instance to a global I/O multiplexing framework. The
result of this step is the creation of a sharing read fd
thread for future I/O dispatching. The design is
illustrated in the Figure 5 :

VRRP is an interface specific protocol. This mean that
a VRRP Instance is bound to a specific interface for
inbound & outbound traffic. We can figure out the
socket pool importance here. As described into VRRP
[rfc2338.5.3.6], VRRP is a layer4 protocol which can
run in conjunction of IPSEC-AH. The VRRP
advertisements can be either IPSEC-AH packet or
direct VRRP packet protocol. So we need to deal with 2
different protocols at a time on the same physical
interface (ethernet interface for us). This highlight that
many VRRP Instance using the same protocol (IPSEC-
AH or VRRP) share a single fd.

The figure 5 show our internal VRRP socket pool
implementation. Each NIC own a maximum of 2 fds
(one for VRRP, the other for IPSEC-AH). All the
VRRP Instances are (de)multiplexed through this fds.
So our design can handle 2*n (de)multiplexing points.

4.2 VRRP Packet Dispatcher

The second part of the global VRRP scheduling
framework is the VRRP Packet Dispatcher. It provide
an asynchronous threaded framework to handle
incoming and outgoing VRRP packets. During the
VRRP bootstrap, a VRRP Socket Pool is created.
Finally the VRRP Socket Pool register a VRRP Packet
Dispatcher per VRRP Socket Pool fds. Then each fds is
handled asynchronously using a global software I/O
multiplexer. This global workflow is illustrated in the
figure 6 :

LVS Director 1 LVS Director 2

WAN NIC

LAN NIC

WAN NIC

LAN NIC

VIP1

VIP2

VIP4

VIP3

DIP1 DIP2

Realserver Pool 1 Realserver Pool 2

Figure 4: VRRP VIP3 & VIP4 synchronisation

ETH0 ETH1 ETHn

fd1 fd2 fd3 fd4 fdi fdi+1

Figure 5: VRRP Socket Pool design

Lin

A
Ins
pa
VR

4.

Th
Sy
illu
the

On
sta
Sy
the
,V
MA
syn

1.
sen

2.
MA
MA
ad
usi

3.
sam

4.
sen
ele

5.
rec

6. VI_3 in MASTER state receive this advertisement
and transit to BACKUP state.

7. Here is the synchronization end event.

If LAN NIC on LVS director 2 becomes alive all the
VRRP Instances transit to their initial VRRP state. With
the step 7 we can highlight a possible flapping Instance
state due to a side effect. Axiom specify that
(VI_3,VI4) must have the same state at a time. So
during step 6, VI_3 transit to BACKUP state. So VI_4
must transit to BACKUP state too. But if VI_4 transit

pace
pace

VRRP Bootstrap
Socket Pool thread

Global scheduling framework
I/O multiplexer

VRRP Packet Dispatcher
thread

VRRP state handler

Kernel S
User S

VRRP Instance
VI_1

VRRP Instance
VI_2

VRRP Instance
VI_n

LOW LEVEL PRIMITIVES

Netlink Multicast SIOCGIF

Figure 6: VRRP Packet Dispatcher design
VRRP Packet Dispatcher can handle many VRRP
tances sharing the same fd. The central part of the

cket dispatcher is the state handler responsible of
RP state transition and synchronization.

3 VRRP Instance Synchronization

e last software component is the Instance
nchronization. The global view of this part is
strated in the figure 4. The implementation follow
 workflow :

to BACKUP state due to a network failure, VI_4 will
never receive MASTER state advertisements. So VI_4
on LVS director 2 can assume that MASTER is down
and then transit to MASTER state it self ! And so on,
axiom specify (VI_3,VI_4) must be sync. So VI_3 on
LVS director 2 transit to MASTER state and start
sending MASTER advert. Symmetrically, VI_3 receive
remote MASTER advertisements and become
BACKUP since its priority is minor than initial
MASTER (VI_3 on LVS director 2). So on, axiom
(VI_3,VI_4) must be sync… So VI_4 on LVS director
1 become BACKUP. But VI_4 on LVS director 1
timeout receiving remote MASTER advert so transit to
MASTER state…. And so on… we repeat this infinitely
so we have a synchronization loop causing a flapping
roaming IP… We can call this phenomena a
“synchronization circuit” (like the famous NOKIA
one). To handle this possible synchronization infinite
loop we can fine the axiom as follow :

I. Predicates

7.
LVS Director 1 LVS Director 2

WAN NIC

LAN NIC

WAN NIC

LAN NIC

VI_1

VI_2 VI_4

VI_3

1.

2.

3.

4.

5.
6.

VI_4

VI_3

Figure 7: VRRP Instance Synchronization
uxVirtualServer OpenSource Project 4

 figure 7, we indicate VRRP Instance in MASTER
te in initial state. To explain efficiently how Instance
nchronization works we take the sample illustrated in
 figure 7. In this configuration we assume that (VI_1
I_2) and (VI_3,VI_4) must be sync. So if one

STER state instance transit to another state, the
chronized instance must transit to the same state.

LAN NIC on LVS director 2 fails, so VI_4 stop
ding MASTER state advertisements.

VI_4 in BACKUP state timeout on receiving
STER advertisements. So VI_4 transition to
STER state on LVS director 1 and start sending

vert (with IPSEC-AH sequence synchronization if
ng IPSEC-AH).

Our axiom imply that (VI_3,VI_4) must be in the
e state at a time.

VI_3 in BACKUP state transit to MASTER state by
ding the higher VRRP advertisement to force
ction (The VRRP owner advertisement).

All BACKUP and MASTER VRRP Instances
eived this owner adver.

(1) init_state(VI_3)LVS2 <> init_state(VI_3)LVS1

(2) (1)=> if init_state(VI_3)LVS2 = MASTER
then init_state(VI_3)LVS1 = BACKUP

(3) Prio(VI)MASTER > Prio(VI)BACKUP

(2),(3)=> Prio(VI_3)LVS2 > Prio(VI_3)LVS1

(5) (state(VI_3)=state(VI_4))LVS1
<> (state(VI_3)=state(VI_4))LVS2

(6) state(VI_3)LVS2 = BACKUP
& init_state(VI_3)LVS2 = MASTER
=> state(VI_4)LVS2 = FAULT

(7) (3)=> if state(VI_4)LVS2=DOWN
then state(VI_4)LVS1=MASTER

(8) state(VI_3)LVS2=MASTER
& state(VI_4)LVS2=FAULT
=> state(VI_4)LVS2=MASTER

II. Finite states handling

Finite state of figure 4 :
(5)&(7) =>
if state(VI_3)LVS1=MASTER
then state(VI_3)LVS2=BACKUP

(6) => state(VI_4)LVS2=FAULT

In the FAULT state the VRRP Instance continue
sending advertisements. So when it become

LinuxVirtualServer OpenSource Project 5

alive it continue sending advertisements with-
out eventual IPSEC-AH sequences synchroniza-
tions.

Finite state initial state (after a takeover):
LAN NIC of LVS director 2 become alive :
(3) => state(VI_4)LVS1=BACKUP
(5) => state(VI-3)LVS1=BACKUP

=> state(VI_3)LVS2=MASTER
(8) => state(VI_4)LVS2=MASTER

So we are safely back to the initial state.

5. Conclusion & future work

In this paper we have introduced a solution for LVS
directors failover using the VRRP protocol. This
protocol was especially designed for this purpose and
provide an acceptable security level using IPSEC-AH
authentication (data integrity & anti-replay). The use of
this code in conjunction of a healthchecking stack can
provide a good solution for transparent directors &
realservers failover. This is the goal of the keepalived
project : http://keepalived.sourceforge.net : provide a all
in one tool to provide realservers & directors failover.

Currently code has been tested with 2 LVS directors
and 4 VRRP Instances. The code need to been audited
with many VRRP Instances handling at a time. The
VRRP Instance timer need to be fined during the
instance synchronization to limit VRRP protocol
convergence. Currently we do not handle VRRP
VMAC since linux kernel doesn’t permit to deal with
more than one MAC address per physical interface. We
use gratuitous ARP to update remote router/hosts arp
caches (which can produce a TTL expiration during
takeover). Need to spend more time into the kernel
source to evaluate work… If you have inputs on this
topics fill free to send it to me (it will save me time �)

References

[1] RFC2338, Virtual Router Redundancy Protocol,
http://www.ietf.org/rfc/rfc2338.txt

[2] RFC2281, Cisco Hot Standby Router Protocol,
http://www.ietf.org/rfc/rfc2281.txt

[3] Using HSRP for Fault-Tolerant IP Routing,
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ics/cs009.htm

[4] Internet DRAFT, Security Framework for Explicit Multicast,
draft-paridaens-xcast-sec-framework-01.txt

[5] RFC2401, Security Architecture for the Internet Protocol,
http://www.ietf.org/rfc/rfc2401.txt

 [6] RFC2402, IP Authentication Header,
http://www.ietf.org/rfc/rfc2402.txt

[7] RFC2104, HMAC: Keyed-Hashing for Message Authentication,
http://www.ietf.org/rfc/rfc2104.txt

[8] Gowri Dhandapani, Anupama Sundaresan, Netlink Sockets –
Overview, http://qos.ittc.ukans.edu/netlink/html/index.html

[9] W. Zhang, Linux Virtual Server OpenSource project,
http://www.linuxvirtualserver.org

http://keepalived.sourceforge.net/
http://www.ietf.org/rfc/rfc2338.txt
http://www.ietf.org/rfc/rfc2281.txt
http://www.ietf.org/rfc/rfc2401.txt
http://www.ietf.org/rfc/rfc2402.txt
http://www.ietf.org/rfc/rfc2104.txt
http://qos.ittc.ukans.edu/netlink/html/index.html
http://www.linuxvirtualserver.org/

	Abstract
	1. Introduction
	2. VRRPv2 Overview
	3. System Architecture Overview
	3.1 Definitions
	3.2 System workflow
	4. Implementation issues
	4.1 VRRP Socket Pool
	4.2 VRRP Packet Dispatcher
	4.3 VRRP Instance Synchronization
	5. Conclusion & future work
	References

